Riparian Development and Effects on Littoral Fish and Habitat, and Developing a Statewide and Regional Context for Lakes Assessment Data

Edward E. Emmons
Martin J. Jennings
Jennifer A. Hauxwell

Fish and Aquatic Sciences Research Program Wisconsin Department of Natural Resources

Stressors in Lakes in Wisconsin

- For our purposes:
 - Human induced perturbations in the
 - Landscape = Land-Use

- Three Scales of Perturbation:
 - Riparian Area Site Level Disturbance
 - Whole Lake Cumulative Effect
 - Watershed/Catchment Scale Land-Use Changes

PRESENTATION OUTLINE

 Lakes Classification as a framework for ecological assessment and monitoring

 Application of lakes classification to real biological data across a stressor gradient of human development at multiple scales

Why Classify Lakes?

- Lakes differ from each other in physical and chemical composition
- Physical and chemical characteristics constrain biology
- Grouping similar lakes simplifies management
- Recognizing important differences allows flexibility

Approach to Lake Classification

- Data driven
 - Maximize similarity on conservative parameters

Ultimately we will use lake classes to examine change in response variables across a range of human-induced lake conditions.

CLASSIFICATION CRITERIA

- Surface Area
- Depth
- Landscape position
- Alkalinity, Calcium, Magnesium, Chloride
- ◆ pH
- Transparency, Turbidity

Box plots of Secchi Depth in Wisconsin

Regression Tree of Secchi Depth in Northern Wisconsin.

Depth as Categorical (cutoff = 18 feet)

Overall PRE=0.218

Land-Use Types

Land-Use Types

Land-Use Types

Upper Wisconsin **Open Forest Agriculture Urban** Wetland Water

Log Total Phosphorus

_og 10 ug/L

Туре	Response Variable	R^2	Region	Depth	Hydrology
Geochemical	Calcium	0.775	<0.001	NS	<0.001
Nutrients	Chlorophyll a	0.152	NS	-<0.05	<0.01
	TP	0.225	NS	-<0.01	<0.01
	TN	0.464	<0.001	-<0.001	<0.01
	DOC	0.172	<0.05	-<0.001	NS
Morphometric	Total Watershed Area	0.238	NS	NS	<0.001
Land Cover	% Agriculture	0.689	<0.001	NS	<0.01
	% Forest	0.533	-<0.05	NS	-<0.01
	% Wetland	0.170	-<0.05	NS	-<0.05

LAKES CLASSIFICATION

- Provides appropriate context for assessing impacts--Reference Conditions
- Allows objective, realistic management goal-setting
- Scale of classification units consistent with monitoring and assessment tools
- Scale of classification units consistent with scale of management

PRESENTATION OUTLINE

- Lakes Classification as a framework for ecological assessment and monitoring
- Application of Lakes Classification Northern Wisconsin Seepage Lakes
 - ▲ Littoral habitat, riparian development, and land-cover in Northern Wisconsin lakes
- Fish assemblages and riparian development
- Macrophyte communities and riparian development

LITTORAL HABITAT STUDY: OBJECTIVES

- Identify features of littoral zone affected by residential development
- Assess contribution of site-level, and lakescale impacts on littoral zone
- Assess relation between littoral habitat and watershed land-cover

APPROACH

- Measure physical habitat and macrophytes in lakes with similar natural features
- Compare sites with and without residential development
- ANCOVA with density of residential development as covariate
- Measure habitat relation to watershed land cover across multiple lakes

ANCOVA MODELS

- Evaluate effects at site and whole lake scale
- Lake=random effect in mixed effects model
- Dependent variables transformed with log +1, or arcsin-square root for proportions
- Analyses performed in SAS mixed procedure

LARGE WOODY DEBRIS

- ♦ More wood at undeveloped sites (p=.026)
- More wood in lakes with fewer residences/km shoreline (p=.004)
- Significant interaction, with least wood found at developed sites in highly developed lakes (p=.030)

MEDIUM WOODY DEBRIS

- ▲ Less wood in developed lakes (p=.003)
- No significant site-level effect

SUBSTRATE

- Local effect (p=.0003)
- ▲ Lake-wide density effect (p=.0004)
- Interaction NS

EMERGENT VEGETATION

- Significant site effect (p=.002)
- Significant lake-wide density effect (p=.006)
- LS Means comparison indicates 20% reduction in emergent vegetation at developed sites

FLOATING-LEAF VEGETATION

- Significant site effect (p=.0001)
- Significant lake-wide density effect (p=.0001)
- Significant interaction (p=.0001)
- Least floating-leaf vegetation at developed sites in developed lakes

PCA SUMMARY

Watershed Land- Cover	Component 1	Component 2
Forest	0.883	-0.049
Wetland	-0.283	0.727
Ag/Grassland	-0.366	-0.684
Barren	-0.041	0.004
Shrub	-0.024	-0.004
Open-Water	-0.046	0.035
% Variance Explaned	0.665	0.262
Cumulative Variance Exp.	0.665	0.927

HABITAT VERSUS LAND-COVER

Habitat	Forest Land	Wetland (+)	
Characteristic	Cover	Ag Land Cover (-)	
Substrate	-	-	
% Emergent	+	NS	
% Floating	+	+	
% Submergent	+	+	
L. Woody Debris	+	NS	
M. Woody Debris	NS	+	
S. Woody Debris	+	NS	

PRESENTATION OUTLINE

- Lakes Classification as a framework for ecological assessment and monitoring
- Littoral habitat, riparian development, and land-cover in Northern Wisconsin lakes
- Fish assemblages and riparian development
- Macrophyte communities and riparian development

BIOLOGICAL INTEGRITY

Capability of supporting and maintaining a balanced, integrated, adaptive community of organisms having a species composition, diversity, and functional organization comparable to natural habitats of the region

INDEX OF BIOTIC INTEGRITY

- Use biota to assess condition of water resources
- Taxonomic and functional metrics
- Modified for region and type of system

Total Phosphorus

ANCOVA, Total Species Richness vs. Colonization/Extirpation Variables

Effect	Parameter	P
Connectivity	+	<.0001
Development	+	.0072
Isolation	-	.0145
Lake Area	+	.0335

Comparison of Least-Square Means

Hypothesized Relative Effects of Colonization and Extirpation on Species Richness

Total Human Activity

PRESENTATION OUTLINE

- Lakes Classification as a framework for ecological assessment and monitoring
- Littoral habitat, riparian development, and land-cover in Northern Wisconsin lakes
- Fish assemblages and riparian development
- Macrophyte communities and riparian development

OBJECTIVES

- Test Floristic Quality Index (FQI) for application as a monitoring tool in Wisconsin Lakes
- Provide preliminary assessment of lake condition within a class of lakes in northern Wisconsin
- Test null hypothesis of no relation between riparian development and macrophyte community

FQI APPROACH

- Based on species richness and "conservatism," a measure of sensitivity
- Lakes randomly selected within class based on objective limnological criteria

SUMMARY

- Development is associated with habitated changes at different spatial scales
- Sensitive fish species may respond to changes related to development but the response differs among lake type
- Preliminary macrophyte data suggests that community composition shifts in response to development

Summary Continued

- Classification and Metric Development are Linked
- Classification Scale must match the scale at which we measure and model our perturbation gradient
- Classification and metric development must be at the scale at which we make management decisions and at the scale at which we do assessment and monitoring

